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ABSTRACT 

A method, well suited for use with digital computers, is given for determining the 
potential in a cylindrical electrode partially submerged in a conducting medium. 
Numerical illustrations and a brief proof of the convergence of the approximants are 
provided. 

I. INTRODUCTION 

In an early application of the method of dual integral equations Danilevsky [l] 
studied the potential in an infinite cylindrical electrode partially submerged in 
a perfectly conducting medium. That is, Danilevsky sought the function u satisfying 
the following conditions. 

a224 a2t4 -+7p++$=o, ax2 -m<x<m; O<r<l, (1) 

u = 0, x<O; r=l, 

au 0 s=, x>O; r=l, 

au E &= 09 as x-+co, 

u = 0, as x-+--03,, (5) 

where E, is a given constant. 
Danilevsky’s method has subsequently been applied [2-4] to other problems 

for Laplace’s equation in infinite cylinders with broken boundary conditions. 
Since the method depends, in essence, on an ingenious application of the Fourier 
transform, it does not readily extend to finite, semi-infinite, and composite 

1 This work was supported in part by the Office of Naval Research, Department of the Navy, 
under Contract NOOWl-67-A-0299-0001 and Task No. NRCMl-278. 
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cylinders. In this paper we present a general procedure for all these configurations 
which is well adapted for use with modern computers. A theoretical advantage 
of this procedure, compared to the methods of multiple series and multiple integral 
equations, cf. [5], is that it allows for a very short, but mathematically rigorous, 
proof of the existence of the Fourier-Bessel coefficients and the convergence of 
approximants to these coefficients (Detailed regularity arguments [6; 71 require 
more delicate and extensive analysis, but are of little interest for applications). 

II. SOLUTIONS 

Let J,, and J1 be Bessel functions of the first kind. yr and elk (k = 1,2,...) denote 
respectively the kth nonnegative roots of Jo and J1 . Note that 0~~ = 0. We denote 
by A(yk, r, 1) and A(ak, r, Oh k = 1, L., (abbreviated hereafter to $&+r) 
and jfo(akr)) the normalized Bessel functions 

By e2 we denote the real Hilbert space of all square summable infinite column 
vectors r = (rl , r2 ,... ) formed with inner product (r, s) = .Cr,sn and the norm 
11 r /] = (r, r)lj2. The domain of an operator V on t2 is denoted by Dy . 

We begin by seeking vectors j and p and a solution u given by 

u(x, r) = jJ id%(w) enx, 
k-l 

x <o; 

u(x, r) = f pk$o(akr) e-orkx + &% x >o; 
k-l 

We set 

This yields the equations 

p = Bj and j = Ap + E,b 

= 0, (6) 

0, k = 1, 2 ,... . (7) 

(8) 
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where the vector 6 and the matrices A = (Akn) and B = (&,) are given by 
bl, = dz yL2 and 

Ak,, = ;2 
yk a,” ’ 

Bkn = 2yn 
y,” - ak” ’ 

k, n = 1, 2 ,... . 

Set D = -~l/~ABy-l/~ where y = (y&) is the diagonal matrix ylck = yk . If we 
put i = ~-l/~nt, we obtain 

(I + D)m = E,,y1/26 (9) 

where I is the identity matrix and 

&a = 4hcyd1’2 ,z2 <y,” _ ,-,$(y 2 - q) 
n 

Let the vectors {e(n) : n = 1,2,...}, defined by e&) = a,, (A,, is the Kronecker 
delta), be the coordinates of the (Rayleigh) Ritz approximation procedure [S, 
Sec. 81. In other words for each positive integer N we seek an approximation 
vector m(N) satisfying 

m,(N) + g -&mm,(N) = &‘;k2bk, 
?Z=l 

k = 1, 2,... N, (10) 

with the convention that m,(N) = 0 for k > N + 1. 
A Fortran IV program using (10) was written by the author. This program 

computes nt(N), j(N), p(N) and u for given N < 40. The coefficients Dkn were 
computed to 6 decimal place accuracy using the first 60 terms in the series giving 
D,, plus a COrreCtiOn term for the remainder. The rOOtS ak and yk were taken from 
[9], and J, and J1 were computed from the polynomial approximations in [lo]. 
The system (10) was solved by Gaussian elimination with iteration on the residues. 
Then p was computed from the first equation in (8). For all practical purposes the 
approximation N = 20 seems accurate enough. We found that 

II i(40) - i(2O)ll and II P(40) - P(2O)ll 
II iW)ll II P(4O)ll 

were less than 0.04. As an illustration of the results obtained, we give in Table 1 
the vectors j and p for two configurations. In Fig. 1 the lines of equipotential are 
shown for the infinite composite cylinder (see Sec. 3). 
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FIG. 1. Lines of Equipotential for u(x, r) in the infinite cylinder. m1 = 1.0, o, = 0.5, 
E. = 1.0. 

TABLE I 

THE COEFFICIENTS j AND p FOR THE INFINITE CYLINDER AND 
FOR THE FINITE CYLINDER WITH h = 0.1 AND p = 1.0” 

Infinite cylinder Finite cylinder 

x = 0.1 p = 0.1 

n 19l Pn In Pn 

1 0.185 0.184 
2 .047 -.053 
3 .023 -.023 
4 .014 -.013 
5 .OlO -.009 
6 .008 -.007 
I .006 -SW5 
8 .oos -.004 
9 a04 -.003 

10 .003 - .003 

0.00919 0.00946 
.00285 - .00208 
.00148 -.00113 
Boo93 - .00075 
.00065 -JO055 
.00048 -DO043 
.00037 -.00035 
.00030 - .00029 
.00025 -.00025 
.00021 - .00022 

“E, = 1.0 in both cases. 
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III. OTHER CONFIGURATIONS 

Let X and p be positive numbers. For the finite cylinder we seek u such that 
Eq. (1) holds for --A < x < p; Eq. (2) holds for --A < x < 0; Eq. (3) holds 
for p > x > 0; Eq. (4) holds for x = p and 0 < r < 1; Eq. (5) holds for 
x = --X and 0 < r < 1. The solution is given by 

u=fjk sinh yk(x + 8 A(~kr) 
sinh yIcX , --x<x<o; O<r<l, 

k-l 

u=&k 
cash O1kb - PI $obkr) + EG 

cash “,& , o<x<p; O<r<l, 
k-l 

where j and p are now determined by 

P = Bj, j = (3/t)-l12m, (I + F)m = Eo(yt)14 

where the diagonal matrix t is given by tkk = coth Ykh and F is given by 

A similar result can be obtained for the semi-infinite cylinder. 
If the material in the infinite cylinder has conductivity u1 for x < 0 and u3 for 

x > 0 we replace (7) by 

Upon replacement of A by (us/u3 A the analysis can be completed exactly as above. 

IV. EXISTENCE AND CONVERGENCE 

We wish to prove the following. 

THEOREM. Equations (8) and (9) possess a unique solution j, p, and m in f2. 
Equation (10) possesses a unique solution m(N) such that 11 m(N) - m II + 0 as 
N-+ co. 

Proof. We observe that D = TT* where 

T, ,  = 2(yka&2 

yk n 
z-a2 ’ 
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and T* is the transpose of T. Let d be the diagonal matrix A,, = Tkk . Clearly 
DA = P. Let L be the matrix given by Lkk = 0 

Lk, = xw’2 
.rr(k2 - n”) ’ 

k # n. 

Schur [ll] has shown that DL = L2. It follows using standard asymptotic results 
for the roots of Bessel functions that T - A = L + G where G is such that 
2&G:, < co. Therefore DG = P. Thus I + D is a positive definite symmetric 
operator of domain P. Hence [8], Eqs. (9) and (10) possess unique solutions in 
J2 and 11 m(N) - m 11 -+ 0 as N -+ co. Consequently j is also uniquely determined. 
Since Mown and U&k r )I are bases in the Hilbert space of functionsfsuch that 
rf 2 is Lebesgue integrable on 0 < r < 1, it follows that B is a unitary operator. 
Therefore p is a uniquely determined element of e2. 
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